DEFORMATION D'UN TREILLIS TRIDIMENSIONNEL

DESCRIPTION DU PROBLEME

Ce tutorial traite de l'analyse structurale d'une partie de la flèche d'une grue de construction qu'on assimile à un treillis spatial (Cf. figure ci-contre). Il s'agit d'une structure constituée de barres identiques. A son extrémité est appliquée une charge M=5t.

Les barres formant la structure sont en acier dont le module d'élasticité E=210 GPa et le coefficient de Poisson σ =0.27. Les barres ont des sections A1=22 mm² et A2=11 mm².

OBJECTIFS

Le but de cette analyse est de déterminer les efforts, les contraintes dans les différents éléments du treillis et le déplacement maximal engendré par la charge appliquée à son extrémité.

RESUME DES DIFFERENTES ETAPES DE L'ANALYSE

- 1. Prétraitement
 - 1.1. Attribution d'un nom de fichier
 - 1.2. Définition des différentes constantes du problème
 - 1.3. Définition du matériau
 - 1.3.1. Type d'élément et constantes réelles du matériau
 - 1.3.2. Propriétés physiques du matériau
 - 1.4. Construction de la géométrie du pylône
 - 1.4.1. Noeuds du treillis
 - 1.4.2. Eléments constitutifs du treillis
 - 1.5. Application des conditions limites
 - 1.5.1. Contraintes en déplacement
 - 1.5.2. Charge localisée
 - 1.5.3. Prise en compte du poids de la structure
- 2. Obtention de résultats
 - 2.1. Définition du type d'analyse
 - 2.2. Démarrage de la résolution
- 3. Post-traitement
 - 3.1. Déformation du treillis
 - 3.2. Efforts et contraintes dans les éléments du treillis
 - 3.2.1. Efforts
 - 3.2.2. Contraintes

1. Prétraitement

1.1. Attribution d'un nom de fichier

Utility Menu >File>Change Jobname

\Lambda Change Jo	bname		\boxtimes
[/FILNAM] Enter	new jobname		
New log and erro	n files?	Ves	
	ОК	Cancel	Help

Entrez le nom du fichier, cochez le bouton « New log and error files » afin de créer un fichier log et erreur » puis cliquez sur « OK ». Un nom de fichier propre au type d'analyse permettra d'identifier aisément par la suite les fichiers générés par ANSYS.

1.2. Définition des différentes constantes du problème

Paramètres scalaires :

Utility Menu>Parameters>Scalar Parameters

Dans la fenêtre qui s'affiche, entrez les paramètres qui suivent les uns après les autres, dans le champ « Selection ». Cliquez sur « Accept » après avoir entré chaque paramètre, et enfin sur « Close » pour fermer cette fenêtre lorsque vous avez fini.

Paramètres	Valeur	Description
М	5000	Masse
G	9.81	Intensité de la pesanteur
F	M*G	Poids
Е	21010^9	Module d'Young
SIGMA	0.27	Coefficient de Poisson
RHO	7800	Densité
A1	2.20 10-3	Section du matériau 1
A2	1.10 10-3	Section du matériau 2

Scalar Parameters
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Selection
Accept Delete Close Help

1.3. Définition du matériau 1.3.1. Type d'élément et constantes réelles du matériau

Main Menu>Preprocessor>Element Type>Add/Edit/Delete

Library of Element Types	X
Only structural element types are shown	
Library of Element Types Structural Mass Library of Element Types Structural Mass Link Beam Pipe Solid Solid Shell Solid Shell Constraint	2D spar 1 30 finit stn 180 spar 8 bilinear 10 actuator 11 spar 8
Element type reference number 1	
Add Options Delete OK Apply Cancel	Help

Cliquez enfin sur « Close » pour fermer la fenêtre nommée « Element Types ». Il faut ensuite définir les constantes réelles des deux éléments, il s'agit de leur section. Les matériaux sont identiques mais ont des sections différentes.

Main Menu>Preprocessor>Real Constants

Cliquez sur « ADD » dans la première boîte de dialogue qui apparaît. Dans la seconde, sélectionnez l'élément 1 (élément par défaut) puis cliquez sur le bouton « OK ».

\Lambda Real Constant Set Number 1, for LINK8				
Element Type Reference No. 1				
Real Constant Set No.	1			
Cross-sectional area AREA	A1			
Initial strain ISTRN				
OK Apply Cancel	Help			

Entrez enfin la valeur de la section dans la troisième fenêtre qui s'affiche, comme indiqué sur la figure ci-contre, puis cliquez sur « Ok ». Cliquez sur « Add » puis sur « Ok ». Tapez A2 dans le champ « AREA » pour définir la deuxième constante du même matériau. Fermez en cliquant sur « Ok ».

∧ Real Constants				
1	Defined Rea	al Constant S	iets	
	Set	1		
	Set	2		
	Add	Edit	Delete]
	Close		Help	

Fermez la dernière boîte de dialogue en cliquant sur « Close ».

1.3.2. Propriétés physiques du matériau

Main Menu>Preprocessor>Material Props>Material Models

Dans la boite de dialogue qui apparaît sélectionnez « Material Model Number 1 », double-cliquez sur « Structural », « Linear », « Elastic » puis sur « Isotropic ».

\Lambda Linear Isotropic Properties for Material Numb 🔀				
Linear Isotropic Material Properties for Material Number 1				
T1 Temperatures E EX E PRXY SIGMA				
Add Temperature Delete Temperature Graph				
OK Cancel Help				

de dialogue qui apparaît la valeur RHO.

« Define Material Model Behaviour ».

-cliquez sur « Density », puis entrez dans la boîte

Après avoir fini, fermez la boîte de dialogue

Donnez ensuite à EX la valeur E, puis à PRXY la valeur SIGMA. EX et PRXY sont respectivement, le module d'élasticité d'Young et le coefficient de Poisson du matériau 1.

Cliquez sur « OK » pour valider et quitter.

▲ Density for Material Number 1	×
Density for Material Number 1	
T1	٦
Temperatures DENS rho	
	_
Add Temperature Delete Temperature Grap	'n
OK Cancel Help	

Ambroise BROU

Double

1.4. Construction de la géométrie du treillis 1.4.1. Noeuds du treillis

Dans cette étape, nous allons positionner les nœuds définissant le treillis. Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS

Create Nodes in Active Coordinate System	\mathbf{X}
[N] Create Nodes in Active Coordinate System	
NODE Node number	1
X,Y,Z Location in active CS	0 0 1
THXY,THYZ,THZX	
Rotation angles (degrees)	
OK Apply	Cancel Help

Entrez ensuite dans la boîte de dialogue, les coordonnées des différents nœuds comme indiqués dans le tableau ci-après. Cliquez plutôt sur « Apply » à chaque fois pour éviter de la fermer.

Noeud	X	у	Z
1	0	0	1
2	2	0	1
3	4	0	1
4	6	0	1
5	8	0	0
6	6	0	-1
7	4	0	-1

Noeud	х	у	Z
8	2	0	-1
9	0	0	-1
10	1	$\sqrt{3} 8$	0
11	3	$\sqrt{3}$	0
12	5	$\sqrt{3}$	0
13	6	$\sqrt{3}$	0

1.4.2. Eléments constitutifs du treillis

Les barres agencées pour former le treillis sont créées en joignant deux nœuds par une ligne droite. Chaque droite forme ainsi un élément de type LINK8. Les barres ont le même type de matériau mais des constantes réelles différentes (voit tableau).

Element	Nœud I	Nœud J	Real	
1	1	1	1	Γ
2	2	3	1	
3	3	4	1	
4	4	5	1	
5	5	6	1	
6	6	7	1	
7	7	8	1	
8	8	9	1	
9	10	11	1	
10	11	12	1	
11	12	13	1	
12	9	1	2	
13	9	2	2	
14	2	8	2	
15	2	7	2	
16	7	3	2	Γ
17	7	4	2	

Element	Noeud I	Noeud J	Real
18	4	6	2
19	1	10	2
20	10	2	2
21	2	11	2
22	11	3	2
23	3	12	2
24	12	4	2
25	5	13	2
26	13	5	2
27	6	13	2
28	6	12	2
29	12	7	2
30	7	11	2
31	11	8	2
32	8	10	2
33	10	9	2

Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes

∧ Element Attributes	×
Define attributes for elements	
[TYPE] Element type number	1 LINK8
[MAT] Material number	1
[REAL] Real constant set number	1
[ESYS] Element coordinate sys	0 💌
[SECNUM] Section number	None defined
[TSHAP] Target element shape	Straight line 💌
ОК	ancel Help

Laissez les éléments sélectionnez par défaut puis cliquez sur « Ok ».

Main Menu > Preprocessor >Modeling > Create > Elements > Auto Numbered > Thru Nodes

Une boîte de dialogue s'affiche vous permettant de sélectionner les nœuds deux par deux (voir tableau précédent). Validez la création de chaque élément en cliquant sur « Apply ». Lorsque tous les éléments ont été créés, faites « OK » pour fermer.

Main Menu > Preprocessor >Modeling > Create > Elements>Elem Attributes

Sélectionnez cette fois-ci la valeur 2 pour le champ « Real constant set number » puis

cliquez sur « Ok ».

Main Menu > Preprocessor >Modeling > Create > Elements > Auto Numbered > Thru Nodes Créez en vous servant du tableau, les éléments du treillis ayant comme « Real » le numéro 2.

Note : pensez à afficher le numéro de chaque nœud : *Menu Utility>PlotCtrls>Numbering...* Dans la boîte de dialogue, cochez « NODE Node numbers » et cliquez ensuite sur « OK » pour valider et quitter. Faites ensuite *Menu Utility>Plot>Nodes* pour afficher les différents noeuds.

Apply U,ROT on Nodes	X
[D] Apply Displacements (U,ROT) on Nodes	
Lab2 DOFs to be constrained	Ali DOF UX UY UZ
Apply as	Constant value 💌
If Constant value then:	
VALUE Displacement value	0
OK Apply Can	tel Help

1.5. Application des conditions limites 1.5.1. Contraintes en déplacement

Les noeuds 1, 9 et 10 ont leurs deux degrés de liberté (UX et UY) nuls.

Main Menu> Preprocessor> Loads > Define Loads> Apply>Structural>Displacement>On Nodes

Une fois les noeuds 1, 9 et 10 sélectionnés, cliquez sur « OK ». Une deuxième boîte de dialogue apparaît. Sélectionnez « All DOF » et entrez la valeur 0 dans le champ de texte « Displacement value » puis sur « OK » pour valider et quitter.

1.5.2. Charge localisée

Main Menu> Preprocessor> Loads > Define Loads> Apply>Structural>Force/Moment>On Nodes Sélectionnez le nœud 5 puis cliquez sur « Ok » dans la première boîte de dialogue qui s'affiche.

\mathbf{X}
FY ▼
Constant value 💽
·Fl
Help

Dans la seconde boîte de dialogue sélectionnez « FY » et tapez dans le champ « Force/moment value », -F puis cliquez sur « Ok ». –F est la composante suivant Y de la charge localisée au nœud 5. Les autres composantes étant nulles.

1.5.3. Prise en compte du poids de la structure

Pour prendre en compte le poids de la structure dans l'analyse, il faut activer la gravité suivant une direction donnée, la direction y dans notre cas.

Main Menu> Preprocessor> Loads > Define Loads> Apply>Structural>Inertia>Gravity>Global

Apply (Gravitational) Acceleration	\times
[ACEL] Apply (Gravitational) Acceleration	
ACELX Global Cartesian X-comp	0
ACELY Global Cartesian Y-comp	G
ACELZ Global Cartesian Z-comp	0
OK Cancel	Help

2. Obtention de résultats

2.1. Définition du type d'analyse

L'analyse effectuée est une analyse non transitoire c'est-à-dire indépendante du temps. *Main Menu>Solution>Analysis Type> New Analysis*

New Analysis		X
[ANTYPE] Type of analysis		
		Static
		🔿 Modal
		C Harmonic
		C Transient
		C Spectrum
		C Eigen Buckling
		C Substructuring/CMS
ОК	Cancel	Неір

Sélectionnez « Static » dans la boîte de dialogue puis cliquez sur « OK » pour valider et fermer.

2.2. Démarrage de la résolution

Main Menu>Solution>Solve>Current LS

∧ /STATUS Command	×
File	
SOLUTION OPTIONS PROBLEM DIMENSIONALITY	

Une fenêtre apparaît dans laquelle sont résumées toutes les informations concernant l'analyse.

Solve Current Load Step	Dans la boîte de dialogue qui s'affiche, cliquez sur « OK » pour démarrer la résolution.
[SOLVE] Begin Solution of Current Load Step Review the summary information in the lister window (entitled "/STATUS Command"), then press OK to start the solution.	Après quelques secondes ou quelques minutes, un message vous informe que la résolution est terminée. Fermer alors la boîte de message pour passer à l'étape de post-traitement.
Solution is done!	

3. Post-traitement

Main Menu> General Postproc> Read Results> Last Set

Pour lire les derniers résultats enregistrés au cours de la résolution.

3.1. Déformation du treillis

Nous souhaitons voir la déformation de la structure du treillis sous l'effet de la charge appliquée à son extrémité.

Main Menu> General Postproc>Plot Results>Deformed Shape

Dans la boîte de dialogue, sélectionnez « Def + undeformed » pour visualiser à la fois la structure du treillis avant et après déformation.

3.2. Efforts et contraintes dans les éléments du treillis 3.2.1. Efforts

Dans cette étape, nous allons visualiser l'intensité des efforts axiaux (traction, compression) dans les différents éléments du treillis.

Main Menu> General Postproc>Plot Results>Contour Plot>Element Solu

\Lambda Contour Element Sol	ution Data			X
Item to be contoured				
Favorites Nodal Solution Element Solution Noted Solution	on es stress			-
Maximur Maxim Maximur Maximur Maximur Maxim	n Stress Ile data (SMISC,1) Itensity			
🔗 X-Compi 🎓 Y-Compi 🎓 1st Princ	onent of force onent of force tipal stress			
🔗 Z-Compi 🎓 von Mise 🎓 XY Shea	onent of moment es total strain r stress			
Element Solution				•
Undisplaced shape key —				
Undisplaced shape key	Deformed shape only			_
Scale Factor	Auto Calculated		35.912	4366631
Additional Options				۲
	ОК	Apply	Cancel	Help

Cliquez sur « Favorites>Element Solution>Summable data (SMISC,1) » puis sur « Ok ».

3.2.2. Contraintes

Main Menu> General Postproc>Element Table>Define Table

∧ Define Additional Element Table Items			
[AVPRIN] Eff NU for EQV strain			
[ETABLE] Define Additional Element Table Items			
Lab User label for item	T_stress		
Item,Comp Results data item	Strain-elastic SMISC, Strain-thermal SMISC, Strain-rotep Strain-other Strain-other LEPFL, Contact LEPPL, Optimization LS, 1		
(For "By sequence num", enter sequence			
no. in Selection box. See Table 4.xx-3			
in Elements Manual for seq. numbers.)			
OK Apply	Cancel Help		

Entrez le nom du tableau dans le champ « Lab User label item » puis sélectionnez « By sequence num ». Sélectionnez « LS » puis tapez la valeur 1 à sa droite. « LS,1 » représente la contrainte axiale dans l'élément. Cliquez sur « Ok » pour valider et quitter.

Main Menu> General Postproc>Plot Results>Contour Plot>Elem Table

∧ Contour Plot of Element Table Data	X
[PLETAB] Contour Element Table Data	
Itlab Item to be plotted T_STRESS]
Avglab Average at common nodes? No - do not avg	
OK Apply Cancel Help	

Acceptez les éléments par défaut (li n'y a qu'une seule table créée) et cliquez sur « Ok ».

