Description du problème

(écoulement laminaire).

L'écoulement sur une plaque plane fait partie des problèmes classiques de la mécanique des fluides les plus étudiés. La plaque de longueur L=1m et d'épaisseur EP=2x10⁻³m très faible comparée à sa longueur afin de moins perturber l'écoulement, est placée dans un domaine modélisé par un carré de dimension LD=2*L. Le fluide choisi est l'air à une température de 20C avec ρ =1.205 kg.m⁻³ et μ =1.8135x10⁻⁵ Pa.s. La vitesse de l'écoulement de l'air autour de la plaque est choisie de telle sorte que le nombre de Reynolds $Re = \frac{\rho U_{\infty}L}{\mu}$ reste inférieur à 10⁶

DIFFERENTES ETAPES DE LA RESOLUTION

1. Pre-traitement (Preprocessing) :

- 1.1. Attribution d'un nom de fichier
- 1.2. Définition des différentes constantes du problème
- 1.3. Définition du type d'élément
- 1.4. Création du domaine d'écoulement et de la géométrie de la plaque
- 1.5. Maillage du domaine

2. Solution :

- 2.1. Application des conditions limites au domaine
- 2.2. Définition des propriétés du fluide
- 2.3. Contrôle du mode d'exécution
- 2.4. Démarrage de la résolution

3. Post-traitement (Postprocessing) :

- 3.1. Comparaison du profil de vitesse à celui de Blasius
- 3.2. Contrainte pariétale (τ_w) et coefficient de traînée (C_D)

1. Pre-traitement (Preprocessing) : 1.1. Attribution d'un nom de fichier

Utility Menu >File >Change Jobname

\Lambda Change Jo	bname		\mathbf{X}
[/FILNAM] Enter	new jobname	flow_over_plate	
New log and erro	r files?	Ves	
	ок	Cancel	Help

Entrer le nom de fichier par exemple « Flow_overPplate » par exemple et cliquez « OK ».

1.2. Définition des différentes constantes du problème

Paramètres scalaires : Allez dans le menu Utility

Utility Menu>Parameters>Scalar Parameters

Dans la fenêtre qui s'affiche, entrez les paramètres qui suivent les uns après les autres, dans le champ « Selection ». Cliquez sur « Accept » après avoir entré chaque paramètre, et enfin sur « Close » pour fermer la fenêtre quand tous les paramètres ont été entrés.

Paramètres	Valeur	Description
L	1 m	Longueur de la plaque en m
EP	0.002	Epaisseur de la plaque en m
LD	2*L	Dimensions du domaine (carre) en m
RE	5000	Nombre de Reynolds
NU	1.8135.10-5	Viscosité dynamique de l'air à 20°C en Pa.s
RHO	1.205	Masse volumique de l'air à 20°C en Kg/m ³
VE	RE*NU/ (L *RHO)	Vitesse à l'infini en m/s
NX1	200	Nombre de divisions sur les lignes 3, 5, 12 et 14
NX2	10	Nombre de divisions des lignes 1, 7, 9 et 11
NY1	80	Nombre de divisions des lignes 2 et 6
NY2	2*NX2	Nombre de divisions des lignes 8 et 10
SPR	0.01	Rapport d'espacement

Scalar Parameters	
Items	
MAXLAYER = 0 NU = 1.813500000E-05	^
NX1 = 200 NX2 = 10 NY1 = 80	
NY2 = 20 RE = 5000 DU0 1 205	≡
SPR = 1.000000000E-02 VE = 7.524896266E-02	~
' Selection	
	-
	_
Accept Delete Close Help	

1.3. Définition du type d'élément

Main Menu>Preprocessor>Element Type>Add/Edit/Delete

Cliquez sur « Add » dans la première boîte. Dans la seconde boîte de dialogue qui apparaît¹, sélectionnez « FLOTRAN CFD » puis cliquez sur « 2D FLOTRAN 141 ». Cliquez sur « OK » pour valider et la fermer.

Ensuite cliquez sur « Close » pour clore la dernière boîte de dialogue 2.

▲ Library of Element Types			▲ Element Types
Only FLOTRAN CFD element types are shown			
Library of Element Types	FLOTRAN CFD Not Solved	2D FLOTRAN 141 3D FLOTRAN 142	Defined Element Types: Type 1 FLUID141
Element type reference number	1	2D FLOTRAN 141	Add Options Delete
ОК Арріу	Cancel	Help	Close Help

1.4. Création du domaine d'écoulement et de la géométrie de la plaque 1.4.1. Création des points clés :

Main Menu>Preprocessor>Modeling>Create>Keypoints>In Active CS

∧ Create Keypoints in Active Coordinate System	
[K] Create Keypoints in Active Coordinate System	
NPT Keypoint number	1
X,Y,Z Location in active CS	-LD/2 -,D/2
OK Apply	Cancel Help

Remplissez chaque champ comme dans la boîte de dialogue ci-dessus, avec les valeurs qui figurent dans le tableau qui suit, en cliquant à chaque fois sur « Apply » afin de ne pas la faire disparaître tant que tous les points ne sont pas créés :

NPT	Х	Y	NPT	Х	Y
1	-LD/2	-LD/2	7	-L/2	-EP
2	0	-LD/2	8	0	-EP/2
3	LD/2	-LD/2	9	L/2	-EP
4	LD/2	LD/2	10	L/2	0
5	0	LD/2	11	0	0
6	-LD/2	LD/2	12	-L/2	0

1.4.2. Création des aires délimitées par les différents points clés :

Il faut commencer d'abord par afficher le numéro de chaque ligne si ce n'est déjà fait, afin de bien se repérer.

Menu Utility>PlotCtrls>Numbering...

Dans la boîte de dialogue, cochez «LINE Line numbers » et cliquez ensuite sur «OK » pour valider et quitter.

Faites ensuite *Menu Utility>Plot>Lines* pour afficher le numéro de chaque ligne.

Main Menu>Preprocessor>Modeling>Create>Areas>Arbitrary>Through KPs

On crée les deux aires du domaine à partir des lignes qui les délimitent. Sélectionnez dans l'ordre les différentes lignes puis cliquez sur « Apply » pour créer la première aire. Répétez la procédure pour la seconde aire (Cf. fableau).

Aire n°	Suite de points clés
1	1, 2, 8, 7, 12, 11, 5, 6
2	2, 3, 4, 5, 11, 10, 9, 8

1.5. Maillage du domaine

Le maillage des deux surfaces créées dans la précédente étape se fait à l'aide de l'outil de maillage « MeshTool ». On commence par diviser les lignes avec les valeurs mentionnées dans le tableau.

Lignes	NDIV	SPACE
3, 5, 12 et 14	NX1	1
1, 7, 9 et 11	NX2	1
8 et 10	NY2	1
2	NY1	SPR
6	NY1	1/SPR

Main Menu> Preprocessor> Meshing> MeshTool

Dans la boîte de dialogue qui s'affiche, choisissez « Lines Set », sélectionnez les lignes indiquées dans le tableau (exemple 3, 5, 12 et 14) puis cliquez sur « Apply ». Dans la seconde boîte de dialogue, entrez dans les champs correspondants, les valeurs de « NDIV » et « SPACE », cliquez sur « Apply » pour valider. Il faut répéter la même procédure pour la suite des éléments du tableau précédent.

Dans le menu MeshTool, choisissez Mesh→Areas, Shape→Tri et « Free », puis cliquez sur « Mesh ». Dans la boîte de dialogue qui apparaît aussitôt, cliquez sur « Pick All ». Une fois le maillage terminé, fermez l'outil « MeshTool » en cliquant sur « Close ». Le maillage du domaine se présente alors comme suit :

Note : Le maillage au voisinage de la plaque doit être beaucoup plus fin du fait des énormes gradients de vitesse et de pression.

2. Solution

2.1. Application des conditions limites au domaine

Faites apparaître le numéro des différentes lignes du domaine d'écoulement : Menu Utility>Plot>Lines

2.1.1. Conditions limite à l'entrée

Main Menu> Preprocessor> Loads > Define Loads> Apply> Fluid/ CFD> Velocity> On Lines Sélectionnez uniquement la ligne 8 et cliquez sur « Ok ». Tapez « VE » dans le champ « VX » et 0 dans le champ « VY », de la seconde boîte de dialogue puis validez en cliquant sur « Ok ».

2.1.2. Conditions de non glissement sur la plaque

Main Menu> Preprocessor> Loads > Define Loads> Apply> Fluid/CFD> Velocity> On Lines

Faites un agrandissement adéquat vous permettant de sélectionner aisément les lignes formant la géométrie de la plaque (lignes 3, 4, 5, 12, 13 et 14). Cliquez sur « Ok », puis dans la deuxième boîte de dialogue, donnez la valeur 0 à « VX » et « VY ». Validez en cliquant sur « Ok ».

Note : Si la sélection vous donne du fil à retordre, entrez les commandes suivantes suivies d'une validation à chaque fois, dans le champ « ANSYS Commande » :

LSEL,S,,,3,5,1

LSEL,A,,,12,14,1

Note : N'hésitez pas à vous référer à l'aide de ANSYS pour comprendre les commandes cidessus.

\Lambda ANSYS Multiphysics Utility Menu (Flow_over_plate)	
<u>Fi</u> le <u>S</u> elect <u>L</u> ist <u>P</u> lot Plot⊆trls <u>W</u> orkPlane Parameters <u>M</u> acro Me <u>n</u> uCtrls <u>H</u> elp	
D 😂 🖬 🚳 🕼 💡 🔤 LSEL,5,,,3,5,1	E
ANSYS Toolbar	
SAVE_DB RESUM_DB QUIT POWRGRPH	

2.1.3. Conditions limites aux frontières haut, bas et en sortie

Main Menu> Preprocessor> Loads > Define Loads> Apply> Fluid/CFD> Pressure DOF > On Lines

Apply PRES on lines	X
[DL] Apply PRES on lines as a	Constant value
If Constant value then:	
PRES Pressure value	0
Apply to endpoints?	🔽 Yes
OK Apply	Cancel Help

Après avoir sélectionné les lignes 1, 7, 9, 10 et 11, cliquez sur « Ok ». Entrez ensuite 0 dans le champ « PRES Pressure value » de la seconde boîte de dialogue et enfin « Ok » pour valider et quitter.

Sauvegardez la base de données avant de passer à la suite : cliquez sur « SAVE_DB » dans le menu principal.

2.2. Propriétés du fluide (Air à 20°C)

Main Menu> Solution> FLOTRAN Set Up> Fluid Properties

Cliquez sur « Ok » dans la première boîte de dialogue et tapez ensuite RHO et NU respectivement dans les champs « Density » et « Viscosity », de la seconde boîte de dialogue. Terminez en fermant cette dernière boîte de dialogue.

2.3. Contrôle du mode d'exécution

2.3.1. Définition du caractère permanent de l'écoulement

Main Menu> Solution> FLOTRAN Set Up> Solution Options Choisissez « Steady State », « Laminar » et « Imcompressible » respectivement dans les champs « TRAN », « TURB » et « COMP » si cela n'est pas déjà le cas. Validez en cliquant sur « Ok ».

2.3.2. Choix du type d'algorithme :

Main Menu> Solution> FLOTRAN Set Up> Algoritm Ctrl Cochez « SIMPLEN » puis cliquez sur « OK » pour valider et quitter.

2.3.3. Définition des paramètres de relaxation

Main Menu> Solution> FLOTRAN Set Up> Relax/Stab/Cap>DOF Relaxation

Il faut associer à l'algorithme « SIMPLEN » des valeurs de relaxation adéquates pour certains degrés de liberté afin de gagner en rapidité. Pour ce faire entrez la valeur 0.95 comme facteur de relaxation pour « VX » et « VY » puis cliquez sur « OK ».

2.3.4. Traitement de paramètres additionnels :

Main Menu> Solution> FLOTRAN Set Up> Additional Out>RFL Out Derived

Le coefficient de pression (Cp) et la contrainte de cisaillement à la surface de la plaque (τ_w) sont des paramètres qui ne sont pas disponibles par défaut en post-traitement après l'analyse. Pour qu'ils le soient il faut le signifier. Pour cela il faut cocher dans la boîte de dialogue qui s'affiche, « PCOE Output pressure coeff » et « TAUW Output wall shear stress », en plus des autres paramètres déjà cochés. Cliquez sur « OK » pour valider et fermer.

2.3.5. Nombre d'itérations

Main Menu> Solution> FLOTRAN Set Up>Execution Ctrl

▲ Steady State Control Settings	\mathbf{X}
[FLDATA2],ITER Iteration Control	
EXEC Global iterations	500
OVER .rfl file overwrite freq	0
APPE .rfl file append freq	0

Entrez la valeur 500 dans le champ « EXEC Global iterations » comme nombre maximal d'itérations. Cliques sur « Ok » pour valider et quitter.

2.4. Démarrage de la résolution

Main Menu> Solution> Run FLOTRAN

Après un certain nombre d'itérations, ANSYS vous annonce que l'analyse est terminée. Fermez alors la boîte de message qui s'affiche pour passer à la phase de post-traitement.

3. Post-traitement

Après la fin de l'analyse, entrez en mode postprocessing pour lire les derniers résultats stockés : Main Menu> General Postproc> Read Results> Last Set

3.1. Comparaison du profil de vitesse à celui de Blasius

Rappel:

La fonction courant normalisée $f(\eta)$ est solution de l'équation de Blasius : $f'' + f \cdot f'' = 0$ avec

les C.L. $\eta = 0;$ f = f' = 0 $\eta \to \infty;$ f' = 1

La variable normalisée η est telle que $\eta = y \cdot \sqrt{\frac{U_{\infty}}{2.v \cdot x}}$ et les composantes u et v de la vitesse sont

ainsi définies :

$$u = U_{\infty} \cdot f'(\eta)$$
$$v = \sqrt{\frac{v \cdot U_{\infty}}{2 \cdot x}} (\eta \cdot f'(\eta) - f(\eta))$$

Pour pouvoir comparer le profil de vitesse sur la plaque avec celui de Blasius, une solution consiste à déterminer la valeur de VX à une position x donnée(x=0 par exemple) et à une distance y de celle-ci. La résolution de l'équation de Blasius permet d'avoir une estimation de l'épaisseur de la couche limite (δ) à une distance x mesurée par rapport au bord d'attaque de

la plaque : $\delta \approx \frac{5.x}{Re_x^{1/2}}$ soit $\delta \approx 0.05$ dans notre cas (x=0.5 m).

Nous allons dans un premier temps définir un chemin partant du point de coordonnées (0,0) au point $(0, 2*\delta)$. Ensuite nous déterminerons les valeurs de y et Vx pour chaque point situé sur ce chemin.

Note : ANSYS effectue en fait à l'occasion une interpolation entre les différents nœuds situés sur ce chemin).

Main Menu> General Postproc>Path Operations> Define Path>By Location

A By Location	×
[PATH] Define Path specifications	
Name Define Path Name :	Slot1
nPts Number of points	2
nSets Number of data sets	30
nDiv Number of divisions	50
NOTE: The number of specified points (nPts) must equal the number of defined points (PPATH command)	
OK	Help

Entrez dans le champ « Name Define Path Name » le nom du chemin et donner au champ « nDiv Number of divisions » la valeur 50 pour avoir une cinquantaine de points d'interpolation. Cliquez sur « Ok » pour valider et fermer.

A By Location in Global Cartesian		
[PPATH] Create Path points in Global Cartesian Coordinate System		
NPT Path point number	1	
X,Y,Z Location in Global CS	0	
CS Interpolation CS	0	
NOTE: The number of defined path points must equal the number of specified points (PATH command)		
ок	ancel Help	

Dans la boîte de dialogue qui s'affiche aussitôt, il faut préciser le numéro et les coordonnées des deux points définissant le chemin. Entrez 1 dans le champ « NPT Path point number » et le couple de valeurs (0; 0) dans le champ « x,y,z Location in Global CS » puis cliquez sur « Ok » pour valider

et passer au point 2 de coordonnées (0 ; 0.1) suivi de « Ok ». Cliquez sur « Cancel » pour quitter lorsque le deuxième point a été rentré et validé.

Main Menu> General Postproc>Path Operations>Map onto Path

∧ Map Result Items onto Path	
[PDEF] Map Result Items onto Path	
Lab User label for item	
Item,Comp Item to be mapped	DOF solution Other quantities Elem table item USUM Velocity VX Velocity VX
Average results across element	Ves
[/PBC] Show boundary condition symbol	
Show path on display	∏ No
ОК Арріу	Cancel Help

On associe en suite le chemin crée dans l'étape précédente à un degré de liberté. Dans la boîte de dialogue, choisissez « DOF solution »> « Velocity VX » car c'est la composante suivant l'axe des x de la vitesse qui nous intéresse. Cliquez sur « Ok » pour valider et quitter

Main Menu> General Postproc>List Results>Path Items

▲ Recall Path	\times
[PATH] Define Path specifications	
Name Recall Path by Name :	PLOT1 PLOT1
OK Cancel	Help

Sélectionnez le nom du chemin déjà créé qui apparaît et cliquez sur « Ok ». Dans la boîte de dialogue qui s'affiche aussitôt (voir plus loin page 9), choisissez « VX ».

∧ List Path Items			\mathbf{X}
[PRPATH] List Path Dat	а		
Lab1-6 Path items to be	listed		XG YG ZG S VX
	Apply	Cancel	Help

Après avoir cliqué sur « Ok », une liste de tous les points situés sur le chemin apparaît dans une fenêtre (Cf. fenêtre ci-dessous). Sauvegardez cette liste ou imprimez la selon votre convenance pour pouvoir la traiter avec un tableur par exemple.

RPATH Command	\mathbf{X}
File	
PRINT ALONG PATH DEFINED BY LPATH COMMAND. DSYS= 0	-
2D XY 145 ITERATIONS ISOTHERHAL INCOMPRESSIBLE LAMINAR FLOM	_
***** PATH VARIABLE SUMMARY *****	
S VX 0.0000 0.0000 0.5000E-03 0.13494E-02 0.10000E-02 0.26973E-02 0.15000E-02 0.49436E-02 0.25000E-02 0.4311E-02 0.25000E-02 0.311E-02 0.3000E-02 0.94097E-02 0.40000E-02 0.94097E-02 0.40000E-02 0.14746E-01 0.45000E-02 0.14738E-01 0.55000E-02 0.14738E-01 0.65000E-02 0.17338E-01 0.75000E-02 0.13698E-01 0.75000E-02 0.13698E-01 0.75000E-02 0.27338E-01 0.75000E-02 0.13698E-01 0.75000E-02 0.27383E-01	8

Les valeurs obtenus lors de la résolution de l'équation de Blasius ou récupérées dans la littérature nous permettent de tracer (avec Excel) le graphique précédent.

3.2. Contrainte pariétale (τ_w) et coefficient de traînée (C_D) 3.2.1. Contrainte pariétale

En régime laminaire, la théorie de la couche limite développée par Blasius conduit à la valeur de la contrainte de cisaillement sur la face supérieure de la plaque plane :

$$\tau_w(x) = 0.332. \frac{\rho^{0.5} \mu^{0.5} U_{\infty}^{1.5}}{x^{0.5}}$$

La même démarche décrite dans le paragraphe précédent nous permet de déterminer la valeur de τ_w sur la face supérieure de la plaque et de la comparer à la valeur théorique :

1. Main Menu> General Postproc>Path Operations> Define Path>By Location

nom du chemin : TAUW_P et coordonnées des Point 1 (-L/2 ; 0) et point 2 (+L/2 ;0).

2. Main Menu> General Postproc>Path Operations>Map onto Path « Other quantities »> « Wall shear TAUW »

3. Main Menu> General Postproc>List Results>Path Items «TAUW»

Après traitement à l'aide d'un tableur, on obtient le graphique ci-dessus, qui montre une très bonne corrélation entre les valeurs théoriques et celles obtenues par simulation numérique.

3.2.1. Coefficient de traînée

Le coefficient de traînée, dû principalement aux frottements, dans le cas de la plaque plane défini par :

$$C_D = \frac{D(L)}{\frac{l}{2}\rho U_{\infty}^2 A}$$
, avec $D(L) = b \int_0^L \tau_w(x) dx$ et A=b.L= aire latérale de la plaque, b= largeur de

la plaque et L=longueur de la plaque ; vaut :

$$C_D = \frac{2\int_0^L \tau_w(x)dx}{\rho U_\infty^2 L}$$

Nous devons donc déterminer la valeur de l'intégrale $2\int_{a}^{L} \tau_{w}(x) dx$.

Main Menu> General Postproc>Path Operations>Integrate

▲ Integrate Path Items	
[PCALC],INTG LabR = FACT * Int (Lab1) d(Lab2))	
LabR User label for result	INT_TAUW
FACT Factor	2
Lab1 1st Path item	TAUW
Lab2 2nd Path item	s 💌
	Cancel Help

On effectue l'opération suivante : $LabR = Fact \times \int_0^L Lab1.d(Lab2)$. Choisissez pour Lab1 la valeur TAUW, pour Lab2 la valeur S (S représente la distance cumulée par rapport au premier point d'interpolation), pour FACT la valeur 2 et enfin donnez un nom servant d'identifiant au résultat final.

Main Menu> General Postproc>List Results>Path Items

\Lambda Recall Path 🛛 🛛 🕅	Sélectionnez le nom du chemin déjà crée qui
[PATH] Define Path specifications	apparaît et cliquez sur « Ok ». Dans la boîte
Name Recall Path by Name : TAUW_P	de dialogue qui s'affiche aussitôt, choisissez « INT_TAUW » puis cliquez sur « Ok ».
	▲ List Path Items
	[PRPATH] List Path Data
TAUW_P	Lab1-6 Path items to be listed XG YG ZG 5 TAUW INT_TAUW
OK Cancel Help	OK Apply Cancel Help

La fenêtre suivante s'affiche présentant un listing du résultat de l'intégration.

\Lambda PRPA	TH Comman	d	×
File			
0.92000 0.92500 0.93500 0.94500 0.94500 0.95500 0.95500 0.95500 0.96500 0.96500	0.12403E-03 0.12448E-03 0.12492E-03 0.12592E-03 0.12582E-03 0.12628E-03 0.12674E-03 0.12767E-03 0.12767E-03 0.12814E-03 0.12862E-03		
2D XY	145 ITERATIONS	ISOTHERMAL INCOMPRESSIBLE LAMINAR FLOW	
***** PAT	H VARIABLE SUMMAR	үү жананак	
\$ 0.97500 0.98000 0.98500 0.99000 0.99500 1.0000	INT_TRUH 0.1291DE-03 0.12959E-03 0.13009E-03 0.13061E-03 0.13115E-03 0.13145E-03	valeur finale	

La valeur finale indiquée correspond au double de la valeur de l'intégration de τ_w sur la surface supérieure de la plaque : $2\int_0^L \tau_w(x) dx = 0.13145 \times 10^{-3}$. On obtient une valeur de C_D=1.93x10⁻², soit une erreur relative de 2,5% comparée à la valeur théorique de 1,88x10⁻²donnée par la relation suivante :

$$C_D = \frac{1.328}{Re_L^{0.5}}$$